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SUMMARY
Differentiated derivatives of human pluripotent stem cells in culture are generally phenotypically immature compared to their adult

counterparts. Their identity is often difficult to determine with certainty because little is known about their human fetal equivalents

in vivo. Cellular identity and signaling pathways directing differentiation are usually determined by extrapolating information from

either human adult tissue ormodel organisms, assuming conservation with humans. To resolve this, we generated a collection of human

fetal transcriptional profiles at different developmental stages. Moreover, we developed an algorithm, KeyGenes, which uses this dataset

to quantify the extent to which next-generation sequencing or microarray data resemble specific cell or tissue types in the human fetus.

Using KeyGenes combined with the human fetal atlas, we identified multiple cell and tissue samples unambiguously on a limited set of

features. We thus provide a flexible and expandable platform to monitor and evaluate the efficiency of differentiation in vitro.
INTRODUCTION

Detailed information on temporal and spatial patterns of

gene expression during human development is essential

to understand how cells establish and maintain their tran-

scriptional identity and how they differentiate from com-

monprogenitors to form the different organs in the human

body. Moreover, knowledge of the gene expression land-

scape in a physiological context is of paramount impor-

tance to identify aberrant patterns of transcription leading

to pathological states (Ju et al., 2013; Lal et al., 1999). To

date, there is little information on the transcriptional

profiles of organs and tissues during human development,

even though optimal use of differentiated derivatives of

human pluripotent stem cells (hPSCs) in regenerativemed-

icine and disease modeling would benefit from detailed

understanding of what drives andmaintains the differenti-

ated state. This knowledge is not only helpful in devel-

oping efficient differentiation protocols for hPSCs and

unequivocally identifying the resultant phenotypes (Gif-

ford et al., 2013; Xie et al., 2013), but also in understanding

why individual (genomic) variations among hPSCs may

result in different outcomes (Bock et al., 2011) andwhether

the wide assumption that some disease states are associated

with upregulation of fetal genes is actually based on fact
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(Fung et al., 2012; Hoshijima and Chien, 2002; Lin et al.,

2014).

Recently, there has been great interest in computational

approaches that help to quantify differences in physiolog-

ical and pathological states in human adult organs and

tissues (Hwang et al., 2011) and similarities between adult

human organs/tissues and differentiated cells derived

from either hPSCs or by direct lineage conversion, also

known as transdifferentiation (Cahan et al., 2014; Morris

et al., 2014). The drawback of these computational ap-

proaches so far is that they have been based on adult

human organs/tissues, which limits their relevance in as-

signing developmental states to differentiated derivatives

of hPSCs or transdifferentiated somatic cells, since they

are often immature and resemble fetal cells more than

those ofmature adult tissues (Hrvatin et al., 2014; Patterson

et al., 2012). Moreover, most current computational tools

use and compare to microarray datasets only. Therefore,

there is a growing need for a computational platform that

can integrate next-generation sequencing (NGS) and mi-

croarray datasets and facilitate their interrogation.

Here we present an algorithm, KeyGenes, that we have

used on NGS data extracted from tissues of 21 different hu-

man fetal organs, both embryonic and extraembryonic

(plus the maternal endometrium), from the first and
hors
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second trimesters of development to determine a panel of

classifier genes that would be sufficient to confer identity

to each fetal organ analyzed with high confidence. We

showed that the developmental classifier genes selected

were largely sufficient to predict the identity of their adult

organ counterparts, even when using different types of

platforms (NGS and microarray). Most importantly, as

proof of concept, we challenged KeyGenes to identify a se-

ries of tissues using either recently published or our own

NGS datasets. These included the following: (1) hPSCs

differentiated to derivatives of the three germ lineages,

namely, endoderm (pancreas), ectoderm (brain), andmeso-

derm (heart); (2) tissue organoids (intestine); and (3) hu-

man fetal and adult organs/tissues. In all cases, KeyGenes

accurately predicted tissue origin and, furthermore, we

could use KeyGenes to assign a developmentally equiva-

lent stage. KeyGenes is an easy-to-use, flexible, and

expandable tool that can be applied to identify stem cell

derivatives, when common marker profiles have been

insufficiently informative, and provide benchmarking for

protocols designed to promote maturation of stem cell de-

rivatives in culture. KeyGenes is available at http://www.

keygenes.nl.
RESULTS

KeyGenes Defines a Transcriptional Barcode to Predict

Human Fetal Organ Identity

We wanted to identify a (sex-independent) transcriptional

barcode that would characterize each organ primordium

during human fetal development, as these are still rela-

tively homogeneous andmainly formed by a limited num-

ber of poorly characterized lineage progenitor cells.

To do this, we first generated NGS data from 111 human

organ/tissue samples from 17 individuals (n = 9 males and

n = 8 females) representing 21 different fetal organs, 17 em-

bryonic and 4 extraembryonic (plus the maternal endome-

trium), at 8.2–9.6, 16–18, and 21–22 weeks of gestation

(W9, W16–18, and W22) (Table S1). Next, we developed

an algorithm (KeyGenes) that uses a 10-fold crossvalida-

tion on the basis of a least absolute shrinkage and selection

operator (LASSO) regression available in the R package

‘‘glmnet’’ (Friedman et al., 2010; Figure 1A). KeyGenes

uses two datasets (a training set and a test set) and one table

with the 500 most variably expressed genes. Then, Key-

Genes determines a set of classifier genes that is sufficient

to identify the samples of the training set, and, finally,

using the classifier genes, it predicts the identity of the

samples of the test set. To validate KeyGenes, we divided

our fetal dataset into a training set (n = 76) and a test set

(n = 39) (Figures 1A and 1B), so that at least two samples

of each organ, preferentially of both first and second tri-
Stem C
mesters, were represented. Based on the classifier genes

(Table S2) and the identity of the samples in the training

set, KeyGenes then predicted the identity of the samples

in the test set (Figure 1C). KeyGenes was capable of predict-

ing 38 of 39 samples of the test set correctly with a mean

identity score of 0.92, of which 33 samples (87%) had an

identity score >0.8 (Table S3). KeyGenes thus provided a

highly accurate prediction of fetal tissue identity for the

test fetal samples.

The Transcriptional Barcode for Human Fetal Organs

during Development

A common characteristic of the 90 fetal classifier genes

identified (Table S2) is that these are expressed at high

levels throughout development in the organ(s)/tissue(s)

they characterize (in general >100 counts per million

[CPM], but some >1,000 CPM), and they are either not ex-

pressed in most other tissues or highly expressed in several

other tissues simultaneously, helping to define the barcode

(Figure 2A). Interestingly, large differences in expression

levels of some classifier genes were even sufficient to distin-

guish between first and second trimester organs. For

example, CYP17A1 in the adrenal is expressed >100 CPM

during the first trimester, but >1,000 CPM in the second

trimester (Figure 2A). Five classifier genes (TNMD, RSPO2,

LINC00514, NR5A1, and CRABP1) identified two different

fetal organs/tissues (Table S2). The selected classifiers for

each organ/tissue varied from one gene (NPPA-AS1 for

heart atrium and MYL3 for heart ventricle) to nine genes

for the umbilical cord (Figure 2B).

In terms of gene ontology (GO), it is noteworthy that

the fetal classifier genes identified were sufficiently related

to be significantly enriched (false discovery rate [FDR] <

0.05) for categories associated with biological processes

(‘‘patterning,’’ ‘‘morphogenesis,’’ and ‘‘development’’),

cellular compartment (‘‘extracellular’’), and molecular

function (‘‘transcription’’ and ‘‘DNA binding’’) (Figure 2C;

Table S2). Furthermore, a substantial proportion of the fetal

classifier genes are transcription factors (n = 24) (Figure 2D),

many being tissue specific and considered master regulator

genes in mice (Table S2). However, it was striking that

about half of the total fetal classifier genes were in fact

not directly related to transcription, but were instead asso-

ciated with extracellular matrix (ECM), cell adhesion, and

surface tension or were components of the cytoskeleton

and cellular transport machinery (Figure 2D; Table S2).

This underscored the importance of cellular shape, struc-

ture, and the niche in determining tissue identity and

function. Interestingly, a few classifier genes are long

non-coding RNAs (lncRNAs) or anti-sense RNAs (asRNAs)

(n = 4), including the unique classifier gene for heart

atrium (NPPA-AS1). Our data are in agreement with the

growing evidence placing lncRNAs as an emerging class
ell Reports j Vol. 4 j 1112–1124 j June 9, 2015 j ª2015 The Authors 1113
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Figure 1. Validation of KeyGenes Using a Human Fetal Transcriptome Dataset
(A) The fetal dataset was divided into a training set and a test set. KeyGenes used the 500 most variably expressed genes across the entire
fetal dataset (top 500 fetal) to determine a panel of classifier genes. KeyGenes then used the classifier genes to predict the identity (and
provide the identity score) of the samples in the test set.
(B) Characteristics of the human fetal samples in the training set and test set are shown.
(C) Identity scores for the samples in the fetal test set. The rows represent the 22 organs/tissues from the fetal training set and the
columns depict the samples in the test set. The identity scores range from zero (black) to one (green). The values of all identity scores are
given in Table S3. 1T, first trimester; 2T, second trimester; heart A, heart atrium; heart V, heart ventricle; mat. endom., maternal
endometrium; sk. muscle, skeletal muscle; sp. cord, spinal cord; umb. cord, umbilical cord.
of important cellular regulators in development (Washietl

et al., 2014).

Hierarchical clustering (Pearson correlation) of the

expression values per organ and trimester (1T + 2T), as

well as per organ independent of the trimester (All), re-

sulted in a higher mean correlation coefficient using the

90 classifier genes than the mean correlation coefficient

that was derived using the 500 most variably expressed

genes of the entire fetal dataset (Top 500 fetal) (Figure 2E).

Accordingly, the clustering of the fetal samples using the 90

classifier geneswas sufficient to group them in a germ layer-

, tissue-, and age-specific manner (Figures S1A and S1B).

Taken together, our results suggested that the classifier

genes, identified as the minimal set of genes or barcode

necessary to predict the identity of 21 different fetal human

organs and the maternal endometrium, represent physio-

logically relevant genes, many of which are associated

with human pathological conditions affecting the organ/

tissue they characterize (Table S2).
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Using the Fetal Data, KeyGenes Predicts Human Adult

Tissue Identity from NGS Data

We next investigated whether the fetal transcriptional bar-

code could be used to predict the identity of adult human

tissues. To this end, we applied KeyGenes to two different

NGS datasets of human adult organs as test sets, using

our complete human fetal dataset (111 samples represent-

ing 21 fetal tissues and the maternal endometrium) as the

training set (Figure 3A) and the top 500 most variable fetal

genes determined previously (Table S3).

KeyGenes was first applied to an NGS dataset consisting

of 61 samples representing adult counterparts of 17 organs

present in our fetal training set (Fagerberg et al., 2014). Sur-

prisingly, 56 samples (92% of all adult samples) were pre-

dicted correctly with a high mean identity score of 0.90

(Figure 3B; Table S3). This suggested that the degree of in-

ter-individual variation between biopsies of the same organ

is remarkably low. More importantly, adult tissue biopsies

of 17 different organs retained significant similarities to
hors



fetal organs with respect to the basic transcriptional wiring,

independently of cellular heterogeneity in the adult organ

(Figure 3B). Even though five samples (two of skin, one of

term placenta, two of cervix) were not predicted correctly,

their correctly predicted biological replicates showed high

identity scores (one skin, three term placenta, one cervix),

and the second best score of those misclassified samples

pointed to the correct organ/tissue (Figure 3B; Table S3).

Further illustrating the predictive power of KeyGenes,

three of the four heart samples were classified as ‘‘heart ven-

tricles’’ (mean identity score = 0.93) and were probably

ventricular biopsies, whereas one heart sample was as-

signed a score of 0.39 for ‘‘heart atrium’’ and 0.4 for ‘‘heart

ventricle,’’ suggesting that this samplemay have contained

both ventricular and atrial heart tissue (Figure 3B; Table S3).

Additionally, we used a second resource of NGS data from

biopsies of ten human adult organs (Human BodyMap 2.0,

Illumina), which were represented in our fetal training set.

From this, KeyGenes predicted nine of ten samples (90%)

correctly with a mean identity score of 0.90 (Figure 3C;

Table S3). The one misclassified sample was the adrenal

gland, which was classified as ‘‘spleen’’ (0.72). However,

the previous adult dataset contained three biological repli-

cates of adrenal samples, all correctly classifiedwith amean

identity score of 0.99 (Figure 3B; Table S3), suggesting that

the adrenal gland sample present in the Human Body Map

2.0 by Illumina may in fact not be adrenal.

We have shown that KeyGenes together with the pro-

vided fetal dataset is a platform capable of predicting the

identity of adult counterparts of fetal tissues with high con-

fidence. Moreover, our results suggest that the minimal

transcriptional organ barcode identified during human

fetal development is in fact maintained into adulthood,

regardless of the increasing cellular complexity of each or-

gan. In addition, we have presented the differentially ex-

pressed genes among the first trimester, second trimester,

and adult for each organ analyzed, showing the transcrip-

tional trajectory of maturation for the tissue/organs

analyzed (Figure S2; Table S4).

Using the Fetal Data, KeyGenes Predicts Human Adult

Tissue Identity from Microarray Data

Although the use of NGS is of increasing importance, DNA

microarray technology is still widely used as it provides fast

and relatively inexpensive gene expression data. Because of

the fundamentally different nature of data from NGS and

the relative (fluorescence) intensity from microarray, we

adapted our algorithm to process microarray data (Fig-

ure 3A). To do this, KeyGenes used the fetal dataset as

training set and the 500most variably expressed fetal genes

determined before (Top 500 fetal) (Table S3), and it con-

tained a scaling step using a broad panel of housekeeping

genes (Eisenberg and Levanon, 2013).
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We applied KeyGenes to 53 samples, mostly human

adult organs, tissues, and cell subpopulations, available on-

line from the Gene Expression Barcode 3.0 (Affymetrix;

McCall et al., 2014), which were represented in our fetal

training set. KeyGenes was able to predict 45 of 53 samples

(85%) correctly with a high mean identity score of 0.86

(Figure 3D; Table S3), suggesting a successful adaptation

of the algorithm.

Two of the mismatched organs were the adult ovary and

testis, but both tissues were predicted with high confi-

dence as ‘‘gonad’’ before using both NGS datasets (Figures

3B and 3C), suggesting that the probes of important classi-

fier genes for ‘‘gonad’’ may not be well represented on the

microarray. Consequently, the sample ‘‘sperm’’ also was

not well predicted. It would be interesting to see whether

NGS data from this very specialized population of cells

would still be identified as ‘‘gonad.’’ Another misclassified

organ was the pancreas, which was predicted as ‘‘intes-

tine,’’ but was predicted correctly using NGS data (Fig-

ure 3B), suggesting that the probes for pancreatic classifier

genes were probably not well represented on the microar-

ray. The sample ‘‘heart ventricle’’ had a very similar mixed

‘‘atrium and ventricle’’ prediction to one of the NGS heart

biopsies (Figure 3B). Finally, the two tongue muscles

included in the microarray datasets were identified as

‘‘skin’’ instead of ‘‘tongue’’ or ‘‘muscle’’; and the only spi-

nal cord sample was identified as ‘‘brain’’ instead of ‘‘spinal

cord.’’ As we were unable to find available NGS from both

adult tongue and spinal cord, we could not conclude

whether the mismatch was due to a lack of representation

of classifier genes on the microarray or a genuine

mismatch between the expression profile between the

fetal and adult organ.

It is noteworthy that microarray data from specific sub-

populations of cells or tissues of the adult organs also

were assigned correctly to the tissue of origin. The 15 sam-

ples from different anatomical regions related to ‘‘brain’’

were all classified correctly, and sub-regions of the intestine

(four sub-regions), kidney (four sub-regions), and stomach

(four sub-regions) also were all assigned to the correct main

organ (Figure 3D). Moreover, the sample adult lung and

fetal lung were predicted as ‘‘lung’’ with an identity score

of 0.91 and 0.98, respectively, whereas the bronchus and

the bronchial epithelial cells had a ‘‘lung’’ prediction but

a lower identity score (0.77 and 0.65, respectively), suggest-

ing a better match with the full tissue than with sub-popu-

lations (Figure 3D; Table S3).

Furthermore, we analyzed predictions in a secondmicro-

array dataset from a different platform (Illumina; Nazor

et al., 2012). KeyGenes was capable of predicting 18 of 21

relevant samples (86%) correctly, with a relatively high

mean identity score of 0.6 (Figure S3; Table S3). The mean

identity score of the correctly predicted fetal tissues
ell Reports j Vol. 4 j 1112–1124 j June 9, 2015 j ª2015 The Authors 1115
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Figure 2. KeyGenes Provides a Transcriptional Barcode for First and Second Trimesters of Human Fetal Development
(A) Heatmap of the expression levels of the fetal transcriptional barcode (90 classifier genes) and the organs they represent during the first
(1T) and second (2T) trimesters. The expression levels (in CPM) of the classifier genes in the corresponding organ/tissue are depicted in
green (50–100 CPM, light green; 100–1,000 CPM, green; >1,000 CPM, dark green), whereas the expression levels in other than the
classifying tissues are displayed in blue (50–100 CPM, light blue; 100–1,000 CPM, blue; >1,000 CPM, dark blue). All organs/tissues per
trimester show a unique expression pattern of the classifier genes.
(B) Numbers of fetal classifier genes per organ/tissue used by KeyGenes to predict identity of the samples in the fetal test set are shown.
(C) Enrichment of GO terms for biological processes (BP), cellular compartment (CC), and molecular function (MF) with an FDR < 0.05 of the
90 fetal classifier genes. All GO terms are provided in Table S2.
(D) Categorization of the 90 fetal classifier genes by CC and MF is given.

(legend continued on next page)
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(n = 12) was 0.67, whereas it was 0.52 for the adult tissues

(n = 7) (Figure S3; Table S3).

In summary, our algorithm is not only robust enough for

NGS or microarray data, but it is also capable of assigning

correct organ predictions to datasets from specific parts of

adult human organs, suggesting that each organ’s tran-

scriptional basic wiring or barcode identified by KeyGenes

from the fetal set remains stable until adulthood, at least

with respect to the 18 main adult organs analyzed. The

intersection of the fetal classifier genes obtained for each

of the four predictions (‘‘fetal from fetal’’ and ‘‘adult

from fetal’’) resulted in 71 common genes, suggesting

that these may be the most relevant genes (represented

as well on the microarray platform) to characterize the

basic wiring of both human fetal and adult organs (Fig-

ure 3E; Table S2).

Monitoring Differentiation Efficiency from hPSCs

with KeyGenes

One challenging issue in stem cell research is still how to

reliably determine the identity and extent of differentia-

tion of stem cells toward a specific cell or tissue type. To

determine whether KeyGenes was suitable for this purpose,

we used it onmultiple NGS datasets that represented hPSCs

differentiated to four different tissue/cell types.We adapted

both the fetal training set and calculated the top 500 most

variably expressed genes, excluding the extraembryonic

fetal tissues and the maternal endometrium (Figure 4A;

Table S3).

First, we generated atrial-like and ventricular-like cardio-

myocytes (Figure S4A) from an NKX2.5:GFP human em-

bryonic stem cell (hESC) reporter line (Elliott et al., 2011)

and assessed their signature with KeyGenes. Cardiac differ-

entiation of hESCs resulted predominantly in GFP-positive

cells with ventricular-like identity, while exogenous treat-

mentwith retinoic acid (RA) during differentiation resulted

in GFP-positive cells with an atrial-like identity, as shown

by the upregulation of atrial markers (COUP-TFII) and

downregulation of ventricular markers (MYL3) much like

the atria and ventricles of the fetal heart (Figure 4B; Devalla

et al., 2015). Furthermore, atrial identity of RA-treated car-

diomyocytes also was demonstrated at the protein level by

co-expression of the atrial marker COUP-TFII and GFP (Fig-

ure 4C). Using KeyGenes, the control NKX2.5:GFP-positive

hESC cardiomyocytes showed a high identity score with

heart ventricle (Figure 4D), while, in the RA-treated group,

NKX2.5:GFP-positive hESC cardiomyocytes increased their

identity score for ‘‘heart atrium’’ (from 0.06 to 0.15),
(E) Mean Pearson correlation coefficient (±SD) between samples of the
expressed genes (top 500 fetal) or the 90 fetal classifier genes. The m
genes, both when the trimester was taken into account (1T + 2T) an
Abbreviations are as given in Figure 1.
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although these cells were still predicted to be ‘‘heart

ventricle’’ but with a lower identity score (reduced from

0.75 to 0.40) (Table S3). Interestingly, in the fetal barcode

matrix, RA-treated NKX2.5:GFP-positive hESC cardiomyo-

cytes showed similarMYL3 expression levels as atrial cardi-

omyocytes, but lacked expression of NPPA-AS1 (Figures 4B

and S5).

Next, we used a dataset from LGR5:GFP reporter hESCs

that were first induced to form teratomas in mice (Forster

et al., 2014; Figure S4B); from the teratomas, ‘‘adult intes-

tinal stem cell’’-like cells were sorted via fluorescence-acti-

vated cell sorting (FACS) on the basis of GFP fluorescence

intensity, and then induced to form organoids resembling

intestinal tissue before being differentiated further. We

analyzed the NGS data from different time points during

the differentiation. Using our fetal dataset as training set,

nine of ten organoids (organoids and differentiated orga-

noids) were classified as ‘‘intestine’’ with a mean identity

score 0.85 (Figure 4E; Table S3). We also included the

NGS data of undifferentiated hESCs in the analysis

and, interestingly, the highest identity score was for

‘‘brain,’’ suggesting that this ectodermal tissue during fetal

development remains relatively immature. Furthermore,

KeyGenes detected a large difference between different

organoids, but not a large difference in maturation

levels between the organoids and their differentiated

counterparts, underscoring the ability of KeyGenes to

monitor differentiation and indicate developmental stage

equivalents.

Assigning Developmental Stages to Differentiated

hPSC Derivatives with KeyGenes

To examine the broader applicability of KeyGenes in as-

signing developmental stages to differentiated hPSC deriv-

atives, we analyzed NGS data from dopaminergic neurons

derived by the differentiation of human induced pluripo-

tent stem cells (hiPSCs) from old (82 years) and young

(11 years) donors (Miller et al., 2013). These dopaminergic

neurons were then either transfected with GFP-progerin, a

protein involved in premature aging, or nuclear GFP as

control (Figure S4C). These aged neurons are regarded as

being possibly useful as a platform to investigate late-onset

diseases such as Parkinson’s disease. All seven samples

analyzed were classified as ‘‘brain’’ with a mean score of

0.47 (Figure 5A; Table S3). KeyGenes confirmed that the ag-

ing of the neurons by progerin had a clear impact on differ-

entiation, always assigning a higher identity score for

‘‘brain’’ to progerin-transfected neurons (mean score of
same organ based on the expression levels of the 500 most variably
ean correlation coefficient was higher using the 90 fetal classifier
d when samples were considered regardless of the trimester (all).

ell Reports j Vol. 4 j 1112–1124 j June 9, 2015 j ª2015 The Authors 1117
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Figure 3. KeyGenes Classifies Human Adult Organs and Tissues Based on the Fetal Transcriptome
(A) KeyGenes was applied to human adult NGS and microarray datasets (test sets) using the fetal dataset as training set. (1) For NGS-
derived count data, KeyGenes searches for the best classifier genes out of the 500 most variable genes of the fetal dataset (Top 500 fetal).
(2) For microarray-derived data, KeyGenes searches for the best classifier genes out of the Top 500 fetal and applies a scaling step to a
broad panel of housekeeper genes (Eisenberg and Levanon, 2013).
(B–D) Identity scores of 17 human adult organ/tissue samples from an NGS dataset (Fagerberg et al., 2014) (B), of ten human adult organ/
tissue samples from the NGS dataset from the Illumina Body Map 2.0 (C), and of 53 human adult organ/tissue samples from the microarray
dataset in Gene Expression Barcode 3.0 (McCall et al., 2014) (D). The rows represent the 22 organs/tissues from the fetal training set and
the columns depict the samples in the test set. The identity scores range from zero (black) to one (green). The values of all identity scores
are given in Table S3.
(E) Venn diagram shows the intersection of the classifier fetal genes used by KeyGenes to identify/predict the different test sets (fetal NGS
test set in Figure 1C; adult NGS test set in (B) [Fagerberg et al., 2014]; adult NGS test set from the Illumina Body Map 2.0 in (C); and adult
microarray test set from the Gene Expression Barcode 3.0 in (D) [McCall et al., 2014]). The 71 common fetal classifier genes are depicted in
Table S2. Abbreviations are as given in Figure 1.
0.57) than to controls (mean score of 0.35) (Figure 5A; Table

S3). When the fetal training set was divided into first and

second trimesters (Figure 5B) with the corresponding top

500 most variably expressed genes, we observed that the
1118 Stem Cell Reports j Vol. 4 j 1112–1124 j June 9, 2015 j ª2015 The Aut
samples had higher identity scores with first trimester

‘‘brain’’ tissue than with second trimester ‘‘brain’’ tissue.

Moreover, using adult samples in the training set resulted

in lower identity scores (Figure 5C) than when either the
hors
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Figure 4. KeyGenes to Monitor hPSC Differentiation
(A) KeyGenes was applied to NGS datasets from differentiated derivatives of hPSCs (test set) using flexible training sets. The selection of
the classifier genes is based on the 500 most variable genes across a given dataset and can be modified.
(B) Heatmap visualizes the binary logarithm of the expression levels (CPM) of selected atrial and ventricular marker genes in the human
fetal heart atrium (A) and ventricle (V) samples and in the control (CTR) and RA-differentiated NKX2.5:GFP-positive and -negative cells.
(C) Immunofluorescence shows COUP-TFII in the CTR and RA-differentiated NKX2.5:GFP-positive subpopulation. Scale bar, 40 mm.
(D and E) Identity scores of the CTR and RA-treated NKX2.5:GFP-positive and -negative cells (D) and of hESC samples, teratomas, intestinal
organoids derived from hESCs, and organoids that have been differentiated further toward intestine (diff.) (Forster et al., 2014) (E). The
fetal dataset was used as training set excluding the extraembryonic tissues and the maternal endometrium samples. The selection of the
classifier genes is based on the 500 most variable genes of the embryonic training set without extraembryonic and maternal endometrium
samples (top 500 fetal w/o). The rows represent the 17 organs/tissues from the fetal training set and the columns depict the samples in the
test set. The identity scores range from zero (black) to one (green). The values of all identity scores are given in Table S3. Abbreviations are
as given in Figure 1.
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Figure 5. KeyGenes Can Be Modified to Assign Developmental Stages
(A–C) Identity scores of dopaminergic neurons derived from two different hiPSC lines, WT-82 and WT-11 (Miller et al., 2013). The
dopaminergic neurons were further differentiated by transfection with progerin-GFP (prog.) or nuclear GFP as a control. As training set,
KeyGenes used either the whole fetal dataset excluding the extraembryonic tissues and the maternal endometrium samples (A), only the
first trimester or second trimester samples excluding the extraembryonic tissues and the maternal endometrium samples (B), or the adult
NGS datasets (Fagerberg et al., 2014; Illumina Bodymap) (C) with the corresponding 500 most variable genes (top 500 fetal w/o, top 500
fetal w/o 1T, top 500 fetal w/o 2T, and top 500 adult).
(D) Identity scores of NGN3:GFP-positive and NGN3:GFP-negative cells derived from hESCs (Liu et al., 2014). The fetal training set
excluding the extraembryonic tissues and the maternal endometrium samples was expanded by an NGS dataset consisting of five human
adult islet of Langerhans samples (Cnop et al., 2014). The 500 most variable genes of the embryonic training set without extraembryonic
and maternal endometrium samples (top 500 fetal w/o) were used. The rows represent the organs/tissues from the different training sets
and the columns depict the samples in the test set. The identity scores range from zero (black) to one (green). The values of all identity
scores are given in Table S3. Abbreviations are as given in Figure 1.
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fetal training set or the first and second trimester samples

were used separately. This suggested that, even though

the progerin-samples were predicted as being ‘‘brain,’’ the

identity score compared with adult brain was even lower.

Using each training set, we noted that there were evident

differences in identity scores between cells that had under-

gone different numbers of passage in culture (Figures 5A–

5C). This showed how KeyGenes can be used to monitor

differentiation conditions as well as to compare replicates

to improve protocol outcomes.

Finally, we applied KeyGenes to NGS data from pan-

creatic endocrine progenitor cells differentiated from

NGN3:eGFP hESCs (Liu et al., 2014; Figure S4D). NGN3 is

an essential transcription factor during pancreas develop-

ment, specifying the fate of its endocrine cells (Rukstalis

and Habener, 2009). A multi-step differentiation protocol

was used to differentiate NGN3:GFP hESCs toward pancre-

atic b cell lineage; cells were then sorted via FACS for GFP

and analyzed at the endocrine progenitor stage (Fig-

ure S4D). The NGN3:GFP-negative differentiated popula-

tion was classified as ‘‘pancreas’’ using the fetal training

set, confirming the presence of pancreatic exocrine (pro-

genitor) cells (Figure 5D; Table S3). Interestingly, the

NGN3:GFP-positive differentiated population, presumably

containing the endocrine progenitors, was misclassified as

‘‘heart atrium’’ (Figure 5D; Table S3). However, large pro-

portions of the pancreas are in fact exocrine cells and the

endocrine cells contribute only 1%–2% to the pancreatic

cell mass (Chu et al., 2001; Rahier et al., 1981). This also ex-

plains why the classifier genes for the (fetal) pancreas are

mainly genes involved in exocrine function of the pancreas

(Figure 2A; Table S2).

Therefore, to have meaningful predictions with respect

to the endocrine lineage (NGN3:GFP-positive differenti-

ated population), the fetal training data used by KeyGenes

were enriched by an available NGS dataset consisting of

five human adult pancreatic islets (Cnop et al., 2014). Us-

ing the 500 most variably expressed genes across our fetal

training set, excluding the extraembryonic fetal tissues

and the maternal endometrium (Table S3), the misclassifi-

cation of the NGN3:GFP-positive cell population disap-

peared and was predicted as ‘‘islet’’ with a score of 0.41

(Figure 5D; Table S3). Additionally, by separating first-

and second-trimester pancreas (1T and 2T) in the training

set, the identity score for the NGN3:GFP-positive cell pop-

ulation increased for ‘‘islet’’ to 0.49 (Figure 5D; Table S3).

This highlights the importance of being able to imple-

ment the appropriate training set, depending on the

purpose of each differentiation experiment, to be able to

assign meaningful identity scores and determine the

equivalent developmental stage (either by using a

different training set for each stage or by separating the

developmental stages of the tissue/cells of interest in the
Stem C
same training set) to improve the outcomes of the differ-

entiation protocols.
DISCUSSION

We have shown here through detailed genomic analysis

that human organs and tissues retain a transcriptional

signature from W9 until adulthood even though each or-

gan is composed of multiple progenitor cell types that

mature over time. It was remarkable that the transcrip-

tional expression profile of a set of less than 100 genes

was sufficient to identify 21 different human fetal organs/

tissues (plus maternal endometrium) and 18 adult human

organs. These classifier genes that we identified not only

included genes involved in transcription regulation but

also genes that define cellular shape and metabolism.

Moreover, some of the classifier genes were lncRNAs and

asRNAs, highlighting the regulatory importance of this

class of genes (Washietl et al., 2014). This was notably illus-

trated by NPPA-AS1, which is thought to regulate NPPA

expression, a gene that encodes atrial natriuretic factor

and is involved in heart development and chamber specifi-

cation (Annilo et al., 2009; Houweling et al., 2005). This

identification also underscores one of the advantages of

KeyGenes, developed to compare data to an NGS (fetal)

training set, in contrast to existing algorithms (Cahan

et al., 2014; Hwang et al., 2011; Morris et al., 2014) that

compare data to networks deduced from microarray data-

sets, which contain a fixed set of probes with low represen-

tation of non-coding RNAs such as lncRNAs and asRNAs. In

our case, three of the four lncRNAs identified as fetal classi-

fier genes (RP13-49I15.5, NPPA-AS1, and LINC00514) were

not present in the microarray adult dataset, but were pre-

sent in the NGS adult dataset and identified there as well

as classifier genes for predictions.

The transcriptional human fetal atlas dataset presented

here, even though limited in number of samples and or-

gans analyzed, is an unique resource that will provide a

deeper understanding of the signaling cascades andmolec-

ular dynamics during human development that lead into

the maturation of progenitor cells within each human or-

gan. The human fetal NGS dataset was paramount to the

development and validation of our prediction algorithm

KeyGenes, and has proven sufficient as training set to iden-

tify both human adult organs (using NGS and microarray

data) as well as several differentiated derivatives of hPSCs.

All hPSC derivatives expressed genes identified as fetal clas-

sifier genes (andmanyhelper classifier genes) of the specific

tissue to which they were claimed to have differentiated

(Figure S5). Comparing differentiated derivatives of hPSCs

to human adult gene expression data is important, but can

be misleading, as it compares immature cells with far later
ell Reports j Vol. 4 j 1112–1124 j June 9, 2015 j ª2015 The Authors 1121



stages of development when entirely different physiolog-

ical parameters have affected cell behavior. Our fetal data-

set, used alone or in combination with, for example, adult

data as a training set, provided an efficient way to assess

progression of hPSC differentiation.

One important feature of the algorithm is that the ever-

growing number of NGS datasets available online, for

example, of different organs, (FACS) cell types, or simply

more biological replicates, can be incorporated easily in

the training set as we have demonstrated. The predictive

possibilities therefore can be extended not only to organs

but, as exemplified here, also to tissues (intestinal organo-

ids) and specific cell types (cardiomyocytes, dopaminergic

neurons, and pancreatic endocrine cells). These will

become even more refined as more datasets become avail-

able and incorporated.

We have described and validated a valuable resource

to the community that will help to determine genes im-

portant for identifying cell types and their stages of

development, so that protocols for enhancing lineage dif-

ferentiation efficiency or cell maturation will have accurate

benchmarks to monitor the process. In addition, by incor-

porating similar data from human fetuses with congenital

defects or derivatives of diseased patient-derived hiPSCs,

it may be easier to identify the underlyingmolecularmech-

anism for the pathology.
EXPERIMENTAL PROCEDURES

Fetal Tissue Procurement
This study was approved by the Medical Ethical Committee of the

Leiden Medical University Center (P08.087). Informed consent

was obtained and the study was conducted in accordance with

the Declaration of Helsinki by theWorld Medical Association. Hu-

man fetal organ and tissue samples (n = 111), from 17 individuals

representing 21 organs, and maternal endometrium, between

gestational W8.2 andW22 (Table S1), were obtained from elective

abortionmaterial (vacuumaspiration)withoutmedical indication.

After washing with 0.9%NaCl (Fresenius Kabi), the organs and tis-

sues were snap-frozen in buffer RLT (QIAGEN) and stored at�80�C
until further use. The organs and tissues were sex genotyped using

primers for AMELOGENIN (Nakahori et al., 1991), as described pre-

viously (Heeren et al., 2015).
External Data
Gene expression data were obtained either from the Gene Expres-

sion Omnibus (GEO) database (GEO: GSE54879 [Liu et al., 2014],

GSE52431 [Miller et al., 2013], GSE56930 [Forster et al., 2014],

and GSE53949 [Cnop et al., 2014]) or from the EMBL-EBI database

(EMBL-EBI: E-MTAB-513 [Illumina Body Map] and E-MTAB-1733

[Fagerberg et al., 2014]). The microarray data were downloaded

from the Gene Expression Barcode 3.0 (http://barcode.luhs.org;

McCall et al., 2014) or from the GEO database (GEO: GSE30652;

Nazor et al., 2012).
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KeyGenes Algorithm

The algorithm uses a 10-fold crossvalidation on the basis of a

LASSO regression available in the R package ‘‘glmnet’’ (Friedman

et al., 2010). To use KeyGenes, to access the R scripts used here,

and to access extra information on the human fetal data or the

training sets used here, please go to http://www.keygenes.nl. We

used three R scripts as follows: (1) script 1 was used to determine

the 500 most variably expressed genes across an NGS dataset

(top 500), which was saved as a .txt file and then used in either

script 2 or 3; (2) script 2 uses an NGS training set to predict an

NGS test set, and it uses the file with the 500 most variably ex-

pressed genes generated with script 1; and (3) script 3 uses an

NGS training set to predict a microarray test set, and it uses the

file with the 500 most variably expressed genes generated with

script 1. Script 3 is identical to script 2 but it includes a scaling

step to a broad panel of 3,787 housekeeper genes (Eisenberg and

Levanon, 2013). For this, the algorithm looks for the housekeeper

genes that are present in the training set and the test set and choo-

ses those that are expressed in at least one tissue.

Gene Expression Levels
As detection limit, a cutoff value of four readswas used. To evaluate

the CPM expression levels, our fetal data and the tested differenti-

ation experiments were analyzed with the R package edgeR 3.2.4,

using the weighted trimmed mean of M values (TMM) method

to normalize (Robinson et al., 2010; Robinson and Smyth, 2008).

Hierarchical Clustering

Hierarchical clustering using complete linkage was based on the

Pearson correlation of the gene expression levels (CPM) calculated

using the base R package stats.

GO Analyses
The enrichment of GO terms for the 90 classifier genes was tested

with DAVID (Huang da et al., 2009). An FDR cutoff of 0.05 was

used.

Venn Diagrams for Gene Expression
The datasets containing the first trimester fetal samples (1T), the

second trimester fetal samples (2T), and the adult samples (Fager-

berg et al., 2014; Illumina Bodymap) were compared per organ.

The genes with gene expression levels higher than 103 the

mean expression of the corresponding dataset (1T, 2T, adult)

were assigned either unique or common appearance across the da-

tasets per organ and visualized in a Venn diagram (Bardou et al.,

2014).

Visualization

The data were primarily visualized using the R package’s gplots and

ggplot2 (Warnes et al., 2014; Wickham, 2009).
ACCESSION NUMBERS

The accession numbers for the data from the fetal organs and the

cardiac differentiation reported in this paper are GEO: GSE66302

and GSE67866, respectively.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, five figures, and four tables and can be found
hors

http://barcode.luhs.org
http://www.keygenes.nl


with this article online at http://dx.doi.org/10.1016/j.stemcr.2015.

05.002.

AUTHOR CONTRIBUTIONS

M.S.R., C.L.M., R.P., F.C., E.J.P.d.K., and S.M.C.d.S.L. conceived the

study. M.S.R., L.v.I., Y.A., H.P.B., W.A., J.J.G., H.D.D., E.W.v.Z.,

and S.M.C.d.S.L conducted experiments and/or performed bio-

informatic analysis. All authors were involved in analysis of the

data. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

We thank H. Locher for help with the fetal dissection; M. Gomes

Fernandes for the sex genotyping; G.M. de Roo for FACS of the

NKX2.5:GFP cells; S.A.J de Zeeuw for bioinformatics support; and

the Centre for Contraception, Abortion and Sexuality (CASA) in

Leiden and the Hague for the collection of the human fetal mate-

rial. S.M.C.d.S.L. is supported by the Netherlands Organisation for

Scientific Research (NWO,ASPASIA 015.007.037) and the Interuni-

versity Attraction Poles (IAP, P7/07). M.S.R., C.L.M., and F.C. are

supported by the Bontius Stichting (PANCREAS). E.J.P.d.K. is sup-

ported by Stichting DON.

Received: April 20, 2015

Revised: May 1, 2015

Accepted: May 1, 2015

Published: May 28, 2015
REFERENCES

Annilo, T., Kepp, K., and Laan, M. (2009). Natural antisense tran-

script of natriuretic peptide precursor A (NPPA): structural organi-

zation andmodulation of NPPA expression. BMCMol. Biol. 10, 81.

Bardou, P., Mariette, J., Escudié, F., Djemiel, C., and Klopp, C.
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